TABLE 6.3

Continuous distributions

Uniform

U(a,b)

Possible applications

Density (see Fig. 6.1)

Used as a “first” model for a quantity that is felt to be randomly
varying between a and b but about which little else is known. The
U(0,1) distribution is essential in generating random values from all
other distributions (see Chaps. 7 and 8)

1 .
f(x)=[_l;—:7 fasx=<b

0 otherwise
0 ifx<a
x—a .
Distribution Fx)=1p—>2 ifa=x=b
1 ifb<x
Parameters a and b real numbers with @ < b; a is a location parameter, b —a is
a scale parameter
Range [a,b]
+
Mean 4 > b
Vari (b—a)
ariance 12
Mode Does not uniquely exist
MLE a= lmin X, b= max X,
=i=n 1si=n
Comments 1. The U(0,1) distribution is a special case of the beta distribution
(when a, = a, =1)-
2 I YV _IIN1Y and [+ v+ L Axl i an cuthintarual Af [0 11 wrieh
&re AL LN U\U,l} aiiul ln\v oA T u-&j 10 a oJuviiiitwivyal wvi l\I,LJ yviuul
Ax=0,
X+ Ax
P(XE[x,x+Ax]) = ldy =(x + Ax) —x = Ax
which justifies the name ‘‘uniform”
Fx)
1/(b~a)—
0 v x  FIGURE 6.1
a g U(a,b) density function.
Exponential expo( B)

Possible applications

Density (see Fig. 6.2)

Interarrival times of ‘‘customers” to a system that occur at a
constant rate

1 ,
—e™*  ifx=0

fx)={8

0 otherwise



TABLE 6.3 (continued)

Exponential expo( )

N _J1-e® if x=0

Distribution F(x)= { 0 otherwise

Parameter Scale parameter g >0

Range [0,)

Mean B

Variance B?

Mode 0o

MLE B = X(n)

Comments 1. The expo(B) distribution is a special case of both the gamma and
Weibull distributions (for shape parameter a =1 and scale pa-
rameter 8 in both cases)

2. If X, X,,...,X, are independent expo(8) random variables,
then X, + X, +---+ X, ~gamma(m,B), also called the m-
Erlang distribution
3. The exponential distribution is the only continuous distribution
with the memoryless property (see Prob. 4.26)
flx)

1.24

1.04

0.8+

0.6

0.4

0.21

0 T T T T T T—X
1 2 3 4 bt 6

FIGURE 6.2

expo(1) density function.

Gamma gamma(a, §)

Possible applications

Time to complete some task, e.g., customer service or machine
repair



TABLE 6.3 (continued)

Gamma

Density (see Fig. 6.3)

Distribution

Parameters
Range
Mean
Variance
Mode
MLE

Comments

gamma(a;, )
ﬁ'-a;td;le—xlB .
f(x) = I ifx>0
0 otherwise

where I'(@) is the gamma function, defined by I'(z) = [ 'e™" dt
for any real number z > 0. Some properties of the gamma function:
I'(z + 1) = zI'(?) for any z >0, I'(k + 1) = k! for any nonnegative
integer k, T'(k+3)=vm-1-3-5---(2k —1)/2* for any positive
integer k, ['(1/2)=v7=

If a is not an integer, there is no closed form. If a is a positive
integer, then

o1 ;
/ I
1-e*® > (—xl—‘?)— if x>0
=0 J*

0 otherwise

F(x)=

Shape parameter « >0, scale parameter 8 >0
(0.)

af

aB’

Bla-1ifa=1,0ifa<]l

The following two equations must be satisfied:

ZlnX,.
In B +W¥(a)= "=‘n , @B =X

which could be solved numerically. [¥(&)=T"(&)/I'(¢) and is

called the digamma function; I’ denotes the derivative of I'.]

Alternatively, approximations to & and B can be obtained by letting

T=[ln X(n) - L/, In X,/n]"", using Table 6.19 (see App. 6A) to

obtain & as a function of T, and letting B = X(n)/a. [See Choi and

Wette (1969) for the derivation of this procedure and of Table 6.19)

1. The expo(8) and gamma(l,8) distributions are the same

2. For a positive integer m, the gamma(m,8) distribution is called
the m-Erlang(B) distribution

3. The chi-square distribution with kdf is the same as the
gamma(k/2,2) distribution

4 If X,, X,,..., X are independent random variables with X, ~
gamma(a,,B), then X, +X,+---+ X ~gamma(a, +a, + -
+ am’ B)

5. If X, and X, are independent random variables with X,~
gammaq(a,,8), then X,/(X, + X,) ~ beta(a,,a,)

6. X ~gamma(a,B) if and only if Y =1/X has a Pearson type V
distribution with shape and scale parameters « and 1/8, denoted
PTS5(a,1/B)

o  ifa<l
. e
lgng(x)z 3 ifa=1
0

fa>1
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fx)
1.2
-1
)
1.04
0.8 4
a=1]
0.6 1
a =2
0.4 @=3
0.24
\
0 T Y T X

1 2 3 4 5 6 7
FIGURE 6.3
gamma(a,l) density functions.
TABLE 6.3 (continued)
Weibull Weibull(a, 8)
Possible applications Time to complete some task (density takes on shapes similar to

gamma densities), time to failure of a piece of equipment
—a_a=1_-(xig)* :
Density (see Fig. 6.4 = {"»3 xr € if x>0
¥ ( g ) f(x)" 0 otherwise
— B :
Distribution F(x) = {1 d if x>0
0 otherwise

Parameters Shape parameter a >0, scale parameter 8 >0
Range [0,%)
Mean A F(l)

£ ar(2)- (o))
Mode lg(“;l)”u ifa=1

ifa<l

Variance
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TABLE 6.3 (continued)

Weibull

Weibull(a, 8)

MLE

Comments

The following two equations must be satisfied:
> Xéln X, > X, > X\
i=r — i=1 B | =

n n

Bl

> x*
i=1
The first can be solved for & numerically by Newton’s method, and
the second equation then gives B directly. The general recursive step
for the Newton iterations is
A+1/a, - C,/B,
/& + (B, H, - C)/B,’

a . =a +
where

>hXx, n n
A=E— B =3 X% C=2X%*hX

i=1 i=1

and

H, = 2 X, *(In X,)’
i=1

[See Thoman, Bain, and Antle (1969) for these formulas, as well as
for confidence intervals on the true a and 8.] As a starting point for
the iterations, the estimate

L —35[21 (In X,)* - (?::lln XE)Z/n]

-1/2

o,

n-1

[due to Menon (1963) and suggested in Thoman, Bain, and Antle

(1969)] may be used. With this choice of &,, it was reported in

Thoman, Bain, and Antle (1969} that an average of only 3.5

Newton iterations were needed to achieve four-place accuracy.

1. The expo(B) and Weibull(1,8) distributions are the same

2. X ~Weibull(e,8) if and only if X ~expo(B”) (see Prob. 6.2)

3. The (natural) logarithm of a Weibull random variable has a
distribution known as the extreme-value or Gumbel distribution
[see Law and Vincent (1990), Lawless (1982), and Prob. 8.1()]

4. The Weibull(2, B) distribution is also called a Rayleigh distribu-
tion with parameter 8, denoted Rayleigh(g). If Y and Z are
independent normal random variables with mean 0 and variance
B® (see the normal distribution), then X=(Y*+ Z*)"*~
Rayleigh(2'/°8)

5. As a—x, the Weibull distribution becomes degenerate at .
Thus, Weibull densities for large a have a sharp peak at the
mode

6.
o ifa<1
1
i ={= ifa=1
lﬂ%f(x) B il a
0 ifa>1
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0 T T
0.5 1.0

FIGURE 6.4

1.5 2.0 2.5 3.0 35 4.0

Weibull{(a,1) density functions.

TABLE 6.3 (continued)

Normal

N(p,o?)

Possible applications

Density (see Fig. 6.5)

Distribution
Parameters
Range
Mean
Variance
Mode

MLE

Comments

Errors of various types, e.g., in the impact point of a bomb;
quantities that are the sum of a large number of other quantities (by
virtue of central limit theorems)

1 PR P
flx)= = e v for all real numbers x
V2nmo
No closed form
Location parameter u € (—%,%), scale parameter o >0
(-oo’oo)

I

2
a

M

A =X(n), &=[151fmﬂm

1. If two jointly distributed normal random variables are uncorre-
lated, they are also independent. For distributions other than
normal, this implication is not true in general
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TABLE 6.3 (continued)

Normal

N(p,o%)

fx)
0.5

0.4

0.34

0.21

0.1

2.

Suppose that the joint distribution of X, X,,..., X,, is mul-
tivariate normal and let p, = E(X;) and C; = Cov(X,,X;). Then
for any real numbers a, b,, b,,...,b,, the random variable
a+b X +b,X,+---+b,X, has a normal distribution with

mean y = a+ L., b,u and variance
ol=2 > bb,C,
i=1j=1

Note that we need nor assume independence of the X’s. If the
X.’s are independent, then

i

o= 2 b} Var(X))
i=1

. The N(0,1) distribution is often called the standard or unit

normal distribution

. If X,,X,,...,X, are independent standard normal random

variables, then X.> + X,” + - - - + X,” has a chi-square distribution
with k df, which is also the gamma(k/2,2) distribution

. If X~N(u,0?), then e* has the lognormal distribution with

parameters w and o, denoted LN(u,0%)

If X ~N(0,1), if Y has a chi-square distribution with k df, and if
X and Y are independent, then X/V ¥Y/k has a ¢ distribution with
k df (sometimes called Student’s t distribution)

If the normal distribution is used to represent a nonnegative
quantity (e.g., time), then its density should be truncated at x =0
(see Sec. 6.8)

. As ¢— 0, the normal distribution becomes degenerate at pu

-3 -2 -1

FIGURE 6.5
N(0,1) density function.
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TABLE 6.3 (continued)

Lognormal LN( g, a?)

Possible applications Time to perform some task [density takes on shapes similar to
gamma(a,B) and Weibull(a,8) densities for a > 1, but can have a
large “‘spike” close to x = 0 that is often useful]; quantities that are
the product of a large number of other quantities (by virtue of
central limit theorems)

L] (LF 2l R
Density (see Fig. 6.6) fxX) =13 xV2ro? P 20°
0 otherwise
Distribution No closed form
Parameters Shape parameter o >0, scale parameter p € (—%,x)
Range [0,%)
Mean ‘”"2’22 ,
Variance e "z (e =1)
Mode e" 7
n n 1/2
> X, > (InX, - )
j = iz =iz
MLE K=" > o n
Comments 1. X~LN(u,0?) if and only if In X ~N(u,o?). Thus, if one has

data X, X,,..., X, that are thought to be lognormal, the
logarithms of the data points, In X,,InX,,...,In X,, can be
treated as normally distributed data for purposes of hypoth-
esizing a distribution, parameter estimation, and goodness-of-fit

tacting
l«vﬂ&lllé

2. As o-»0, the lognormal distribution becomes degenerate at e,
Thus, lognormal densities for small o have a sharp peak at the
mode

3, 11_[3 f(x) =0, regardless of the parameter values

[T R
B -

0.8

0.4

0.2 4

0

T T 1 T T T —X

05 1.0 L5 20 25 30 35 40 45 50

FIGURE 6.6
LN(0,0?%) density functions.



TABLE 6.3 (continued)

Beta

beta(a,, a,)

Possible applications

Density (see Fig. 6.7)

Distribution

Parameters
Range

Mean

Variance

Mode

MLE

Comments

Used as a rough model in the absence of data (see Sec. 6.9);
distribution of a random proportion, such as the proportion of
defective items in a shipment; time to complete a task, e.g., in a
PERT network

x"‘_l(l - x)arl
fix)= B(a,,a;)

0 otherwise

if0<x<l1

where B(a,,a,) is the beta function, defined by

1
B(z,.2,) =L - dr

for any real numbers z, >0 and z, > 0. Some properties of the beta
function:

[(z,)l(z,)

B(z,,z,) = B(z,,2,), B(z,,z,) = Tz, + z,)

No closed form, in general. If either «, or a, is a positive integer, a
binomial expansion can be used to obtain F(x), which will be a
polynomial in x, and the powers of x will be, in general, positive
real numbers ranging from 0 through o, + a, ~ 1

Shape parameters a, >0 and a, >0

[0.1]
al
@, T a,
@, &,

(a1+az)2(‘11+a2+1)
r;;—%il_—z if o, >1, a,>1

0and1 if a,<1,a,<1

0 if (<1, a,=1) orif (a,=1,a,>1)
1 if (¢;=21,a,<1) orif (a,>1,a,=1)
(does not uniquely exist if @, =a,=1

The following two equations must be satisfied:
Y(a,) - ¥4, +&,)=InG,, V(&) V&, +&)=InG,

where ¥ is the digamma function, G, =(II"_, X,)""", and G, =

[T, (1-X,)]'"" [see Gnanadesikan, Pinkham, and Hughes

(1967)]; note that G, + G,=<1. These equations could be solved

numerically [see Beckman and Tietjen (1978)], or approximations

to &, and &, can be obtained from Table 6.20 (see App. 6A), which

was computed for particular (G,,G,) pairs by modifications of the

methods in Beckman and Tietjen (1978)

1. The U(0,1) and beta(1,1) distributions are the same

2. If X, and X, are independent random variables with X, ~
gamma(a;, ), then X,/(X, + X,) ~ beta(e,,a,)

3. A beta random variable X on [0,1] can be rescaled and relocated
to obtain a beta random variable on [a,b] of the same shape by
the transformation a + (b —a) X



TABLE 6.3 (continued)

Beta

beta(a,,a,)

fix)

3J a, =1.5, a,®5

4. X ~beta(a,,q,) if and only if 1 — X ~beta(a,,a,)

5. X ~beta(e,,a,) if and only if ¥ = X/(1—~ X) has a Pearson type
VI distribution with shape parameters «,, @, and scale parameter
1, denoted PT6(a,,a,,1)

6. The beta(1,2) density is a left triangle, and the beta(2,1) density
is a right triangle

7.
w if a, < 1 o if a, < 1
lim f(x)={a, ife, =1, lim f(x)={@a, ifa,=1
=0 0 ife,>1 S 0 ife,>1

8. The density is symmetric about x = } if and only if a, = a,. Also,
the mean and the mode are equal if and only if o, = «,

s s fix)
a, =5, a,=1.
17 N
01-5, u2-5
e =3, a, =3
1 72
2 - Gl 2, oy 2
1
/ ul-l, “2'1 \\
* 1] T T T T y— £
0.2 0.4 0.6 0.8 1.0
()
fix)

2 a - 1, a,=2
o= 2, e, = 1
01-0.5;02'0.2 01'0.2, 02'0-5
' a,=0.5, a,=0.5
] T T X T T x
02 0.4 0.6 08 1.0 0 0.2 0.4 06 08 10
() (d)
FIGURE 6.7
beta(e,,a,) density functions.
Pearson type V PT5(a, B)

Possible applications

Density (see Fig. 6.8)

Time to perform some task (density takes on shapes similar to
lognormal, but can have a larger “spike” close to x = 0)

x—(cﬁ—l)e—ﬂ/x

fx)=7 B T(a)

0 otherwise

ifx>0



TABLE 6.3 (continued)

Pearson type V PTS(a, B)
1-F (l) ifx>0
Distribution F(x)= S\x
0 otherwise
where F;(x) is the distribution function of a gamma(a,1/8) random
variable
Parameters Shape parameter a >0, scale parameter >0
Range [0,)
Mean B fora>1
a-—1
Variance -—B;— for a >2
(@=1)a-2)
Mode B
a+l
MLE If one has data X,, X,, ..., X, then fit a gamma(a,, B;) distribu-
tion to 1/X,,1/X;, ..., 1/X,, resulting in the maximum-likelihood
estimators a; and B;. Then the maximum-likelihood estimators for
the PT5(a,B) are & = &; and B = 1/8,; (see comment 1 below)
Comments 1. X~PT5(a,B) if and only if ¥ =1/X ~ gamma(a,l/B8). Thus,
the Pearson type V distribution is sometimes called the inverted
gamma distribution
2. Note that the mean and variance exist only for certain values of
the shape parameter
fx)
3.6
3.0
a=4
2.4
1.84

1.2
0.6+
0 T T T T T T T Y ﬁx
0.5 1.0 1.5 2.0 25 30 35 4.0 4.5
FIGURE 6.8

PT5(a,1) density functions.

5.0



TABLE 6.3 (continued)

Pearson type VI PT6(a,,x,,B)
Possible applications Time to perform some task
/ ay—1
| | W itx>0
Density (see Fig. 6.9) f(x) =1 BB(a,,a,)[1 + (x/B)]""™
0 otherwise
Fp| — if x>0
Distribution Fx)=1"8\ x+8 1 x
0 otherwise
where Fg(x) is the distribution function of a beta(a,,«,) random
variable
Parameters Shape parameters «, >0 and «, >0, scale parameter 8 >0
Range [0,)
Mean Pa for a,>1
a,—1
2 —
Variance Ba(a ;L %=1 for a,>2
(2, — 1), - 2)
Bla, — 1) . -
Mode a,+1 if oy =1
0 otherwise
MLE If one has data X, X, . .., X, that are thought to be PT6(a,,a,,1),
then fit a beta(e, ,a,) distribution to X;/(1+ X,)fori=1,2,...,n,
resuiting in the maximum-iikeiihood estimaiors &, and &,. Then the
maximum-likelihood estimators for the PT6(e,,a,,1) (note that
B = 1) distribution are also &, and &, (see comment 1 below)
Comments 1. X~PT6(a,,a,,1) if and only if ¥ = X/(1 + X) ~ beta(a,,a,)
2. If X, and X, are independent random variables with X, ~
gamma(w,;,B), then Y= X,/X, ~PT6(«,,a,,B) (see Prob. 6.3)
3. Note that the mean and variance exist only for certain values of
the shape parameter a,
Triangular triang(a,b,¢)

Possible applications

Density (see Fig. 6.10)

Distribution

Parameters

Range

Used as a rough model in the absence of data (see Sec. 6.9)
2(x — a)

G-aic-a TI=FEC
foy={ 26-x . _
m fc<x=<bh
0 otherwise
(0 ifx<a
(x_a)z i < y <<
m fasx=c
F(x) =1 2
1_____Lb____{)____ fe<x=bh
"G-a)b-c¢ °°FT
\1 ifb<x

a, b, and ¢ real numbers with a <c < b. a is a location parameter,
b — a is a scale parameter, c is a shape parameter

{a,b]
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fix) 1)
4 4 4

w-)

w
o
o
-

(a)
7
f(x)
4
34 34
ay =2 =4
2 4
3, = 4
14 a, -2
8, " 1
T T = 0 T i : T T Yz
5 ] 1 S [3
(4)
FIGURE 6.9
PT6(«,,a,,1) density functions.
TABLE 6.3 (continued)
Triangular triang(a,b,¢)
Mean atb+c
3
Variance a’+b*>+c*—ab—ac— bc
18 g

Mode c
MLE Our use of the triangular distribution, as described in Sec. 6.9, is as

a rough model when there are no data. Thus, MLEs are not

relevant
Comment The limiting cases as ¢ — b and c— a are called the right triangular

and left triangular distributions, respectively, and are discussed in
Prob. 8.7. For a=0 and b =1, both the left and right triangular
distributions are special cases of the beta distribution

fx)

2/(b—a) 1

FIGURE 6.10
triang(a,b,c) density functions.
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Lawless (1982) for other applications]. Then the density function and distribu-
tion function (if it exists in simple closed form) are listed. Next is a short
description of the parameters, including their possible values. The range
indicates the interval where the associated random variable can take on values.
Also listed are the mean (expected value), variance, and mode, i.e., the value
at which the density function is maximized. MLE refers to the maximum-
likelihood estimator(s) of the parameter(s), treated later in Sec. 6.5. General
comments include relationships of the distribution under study to other distri-
butions. Graphs are given of the density functions for each distribution. The
notation following the name of each distribution is our abbreviation for that
distribution, which includes the parameters. The symbol ~ is read “is distribut-
ed as.”

Note that we have included the less familiar Pearson type V and Pearson
type VI distributions, because  we have found that these distributions often
provide a better fit to data sets whose histograms are skewed to the right (see
Fig. 6.19) than standard distributions such as gamma, Weibull, and lognormal.

6.2.3 Discrete Distributions

The descriptions of the six discrete distributions in Table 6.4 follow the same
pattern as for the continuous distributions in Table 6.3.

TABLE 6.4

Discrete distributions

Bernoulli Bernoulli( p)

Possible applications Random occurrence with two possible outcomes; used to generate

other discrete random variates, e.g., binomial, geometric, and
negative binomial

1-p ifx=0
Mass (see Fig. 6.11) p(x)= {p ifx=1
0 otherwise
0 ifx<0
Distribution F(x) = {1 -p if0=x<1
1 iflsx
Parameter p€(0,1)
Range {0,1}
Mean p
Variance p(1-p)
0 if p<}
Mode Oand 1 if p=14
[1 if p>14
MLE p=X(n)
Comments 1. A Bernoulli( p) random variable X can be thought of as the

outcome of an experiment that either ‘“‘fails” or ‘“‘succeeds.” If
the probability of success is p, and we let X = 0 if the experiment



TABLE 6.4 (continued)

Bernoulli

Bernoulli( p)

p(x)

1—p—

fails and X =1 if it succeeds, then X ~ Bernoulli( 7). Such an
experiment, often called a Bernoulii trial, provides a convenient
way of relating several other discrete distributions to the Ber-
noulli distribution

. If r is a positive integer and X,, X,, ..., X, are independent

Bernoulli( p) random variables, X, + X, + - - - + X, has the bino-
mial distribution with parameters ¢ and p. Thus, a binomial
random variable can be thought of as the number of successes in
a fixed number of independent Bernoulli trials

. Suppose we begin making independent replications of a Bernoul-

li trial with probability p of success on each trial. Then the
number of failures before observing the first success has a
geometric distribution with parameter p. For a positive integer s,
the number of failures before observing the sth success has a
negative binomial distribution with parameters s and p

. The Bernoulli( p) distribution is a special case of the binomial

distribution (with r=1 and the same value for p)

FIGURE 6.11

Bernoulli{ p) mass function (p > 0.5 here).

Discrete uniform

DUG, /)

Possible applications

Mass (see Fig. 6.12)

Distribution

Parameters

Range

Random occurrence with several possible outcomes, each of which
is equally likely; used as a “‘first” model for a quantity that is
varying among the integers i through j but about which little else is

known

p(x) = Tl ifxe{i,i+l,...,j}
0 otherwise
0 if x <i

F(x) = L’;JT::LII ifi=x=j
1 if j<x

where |x] denotes the largest integer <x

i and J integers with { < j; i is a location parameter, j — i is a scale

parameter
{i,i+1,..., )}



TABLE 6.4 (continued)

Discrete uniform DU, j)
Mean it
2
. (j—i+1Y -1
V ce M 4
arian &
Mode Does not uniquely exist
MLE i= 1mkin X,, i= max X,
Comment The DU(0,1) and Bernoulli(}) distributions are the same
px)

1/ (G—i+ 1)

L B PO PO B T,* FIGURE 6.12

! i—ll ! Hl-ll ! jil ! J'*I'I} DU(i, ;) mass function.
Binomial bin(¢, p)

Possible applications

Mass (see Fig. 6.13)

Distribution

Parameters
Range
Mean
Variance

Mode
MLE

Number of successes in ¢ independent Bernoulli trials with probabili-
ty p of success on each trial; number of “‘defective’” items in a batch
of size ¢; number of items in a batch (e.g., a group of people) of
random size; number of items demanded from an inventory

t) x r—x . .

1- ifxe{0,1,...,¢

p(x)={(x p-p) ( )
0 otherwise

where (;) is the binomial coefficient, defined by

(t) _ t!
x/ x!(t— x)!
{0 if x<0
Lx]
F(X)=l2 (:)p"(l -p)7 if0=x=t
i=0
1 ifr<x
t a positive integer, p € (0,1)
{0,1,...,¢}
p
1p(1-p)
p(t+1)—1and p(r+1) if p(¢+ 1) is an integer
Lp(t + 1)) otherwise

If ¢ is known, then p = A_’(n)_/t. If both ¢ and p are unknown, then ¢
and p exist if and only if X(n)> (n—1)S*(n)/n = V(n). Then the



TABLE 6.4 (continued)

Binomial bin(¢, p)
following approach could be taken. Let M= max X,, and for
k=0,1,..., M, let f, be the number of X;’s = k. Then it can be
shown that { and p are the values for ¢ and p that maximize the
function
M ‘ el
g(t, p)= Y filn(t—k+1)+ntln(1 - p)+ nX(n)In 1fp
k=1 .
subject to the constraints that t€ {M, M +1,...} and 0<p <1. It
is easy to see that for a fixed value of ¢, say ¢,, the value of p that
maximizes g(t,,p) is X(n)/t,, so f and p are the values of ¢ and
X(n)/t that lead to the largest value of g[t,X(n)/t] fort€ {M, M +
1,..., M}, where M’ is given by [see DeRiggi (1983)]
w = | XM -1
1= [V(n)/X(n))
Note also that g[t,X(n)/f] is a unimodal function of ¢
Comments 1. If Y, Y,,...,Y, are independent Bernoulli( p) random vari-
ables, then Y, + ¥, + .-+ Y, ~bin(¢, p)
2. If X, X,,...,X,, are independent random variables and X, ~
bin(¢;, p), then X, + X, + -+ X, ~bin{(t, + 1, +---+1_,p)
3. The bin(¢, p) distribution is symmetric if and only if p = 1
4. X ~bin(t, p) if and only if t — X ~ bin(z,1 - p)
5. The bin(1, p) and Bernoulli( p} distributions are the same
pix} p(x)
0.6 0.64
0.5 t=(5) 0.5 =10
p=0. =
0.4 0.4 p=0.1
0.3— 0.3
0.2 0.2
0.1 0.1
ol 1 1 L 0 I [ E N N N T I
0 2 4 3 01 2 3 4 56 7 8 910
p(x) p(x)
0.6 o 0.6 =10
0.5 p=0. 0.5 p=05
0.4 0.4
0.2 0.2"{
0.1- 0.1 I | ‘
| 1 P | | 1 | |
001 2 4 5x 0012345678910
FIGURE 6.13

bin(z, p) mass functions.



0.4 —

0.2
0.1

TABLE 6.4 (continued)

Geometric

geom( p)

Possible applications

Mass (see Fig. 6.14)

Distribution

Parameter
- Range

Mean
Variance

Mode
MLE

Comments

px)
0.6

0.5

0.3

p =025

Number of failures before the first success in a sequence of indepen-
dent Bernoulli trials with probability p of success on each trial;
number of items inspected before encountering the first defective
item; number of items in a batch of random size; number of items
demanded from an inventory

_[p(1-py ifxe{0,1,...}
, p(.x) {0 otherwise
1-a-p*t ifx=0
o=
=10 otherwise
PE€(0,1)
{0,1,...}
l1-p
p
1-p
Pz
0
ot
P= R+
1. IfY,, Y,,... is a sequence of independent Bernoulli( p) random

variables and X = min{i:Y, =1} —~ 1, then X ~ geom( p).

2. If X, X,,..., X, are independent geom( p) random variables,
then X, + X, + --- + X, has a negative binomial distribution with
parameters s and p

3. The geometric distribution is the discrete analog of the exponen-
tial distribution, in the sense that it is the only discrete distribu-
tion with the memoryless property (see Prob. 4.27)

4. The geom(p) distribution is a special case of the negative
binomial distribution (with s =1 and the same value for p)

) |||[|
01 2 3 4 5§

FIGURE 6.14
geom( p) mass functions.

|
6

b (x)
0.6
p =0.50
0.5
0.4
0.3
0.2
0.1
llllx 0 Illl.lill
8 9 10 01 2 3 4 5 6 7 8 910



TABLE 6.4 (continued)

Negative binomial

negbin(s, p)

Possible applications

Mass (see Fig. 6.15)

Distribution

Parameters
Range

Mean

Variance

Mode

MLE

Comments

Number of failures before the sth success in a sequence of indepen-
dent Bernoulli trials with probability p of success on each trial;
number of good items inspected before encountering the sth defec-
tive item; number of items in a batch of random size; number of
items demanded from an inventory

p(x)z[(ﬁx"l)p’(l—p)‘ ifxe{0,1,...}

x
0 otherwise
{ Ix] i1
= £ i =
F(x)zl,:EO( i )p(l_p) ifx=0
0 otherwise
s a positive integer, p € (0,1)
{0,1,...}
st - p)
p
s1-p)
2
4

Let y =[s(1 - p)—1]/p; then

yand y +1 if y is an integer

Mode = { Lyl +1 otherwise

If 5 is known, then p = s/[X(n) + s]. If both s and p are unknown,
then § and p exist if and only if V(r) = (n — 1)8§°(n)/n > X(n). Let
M=max X, and for k=0,1,..., M, let f, be the number of

1=i=n
X;s= k. Then we can show that § and p are the values for s and p
that maximize the function

h(s,p)= 2 f.In(s+k— 1)+ nsln p + nX(n) In(1 - p)

subject to the constraints that s€ {1,2,...} and 0<p<1. For a

fixed value of s, say s,, the value of p that maximizes h(s,,p) is

50/[X(n) +5,], so that we could examine h(1,1/[X(n)+1]),

R(2,2/[X(n)+2]), ..

s and s/[X(n)+s] that lead to the biggest observed value of

h(s, s/[X(n) + 5]). However, since h(s,s/[X(n) + s]) is a unimodal

function of s [see Levin and Reeds (1977)], it is clear when to

terminate the search

1. If Y, Y, ..., Y, are independent geom( p) random variables,
then Y, + Y, + -+ + Y, ~ negbin(s, p)

2. IfY,,Y,,...is asequence of independent Bernoulli( p) random
variables and X = min{i: L_, ¥, =s} - s, then X ~ negbin(s, p)

3.If X, X,,..., X, are independent random variables and X, ~
negbin(s;,p), then X,+ X,+---+ X, ~negbin(s, +s,+ -
+5,,,P)

4. The negbin(1, p) and geom( p) distributions are the same

. A
. Then § and p are chosen to be the values of
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p(x) p(x)
0.30— 0.30
§=2 §s=5
0.25— p=0.5 0.25— =05
0.20— 0.20
0.15— 0.15—
0.10+ 0.10
0.05— I 0.05 I |
. L, .U |1
01 2 3 4 5 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
FIGURE 6.15
negbin(s, p) mass functions.
TABLE 6.4 (continued)
Poisson Poisson(A)

Possible applications

Mass (see Fig. 6.16)

Distribution

Parameter
Range
Mean

MLE
Comments

Number of events that occur in an interval of time when the events
are occuring at a constant rate (see Sec. 6.10); number of items in a
batch of random size; number of items demanded from an inventory

e—A x
p(x) = T ifxe{0,1,...}
0 otherwise
0 if x <0
- Lx] i
Fx = e—*E% if0=<x
i=0 **
A>0
{0,1,...}
A

A

{A —1land A if A is an integer

LA] otherwise
A= X(n)
1. Let ¥,,Y,,.. be a sequence of nonnegative IID random vari-

ables, and let X = max{i: L_, ¥;=1}. Then the distribution of
the Y’s is expo(1/A) if and only if X ~ Poisson{A). Also, if
X' = max{i: Z'}ﬂ Y, = A}, then the Y’s are expo(1) if and only if
X' ~ Poisson(A) (see also Sec. 6.10)

2. If X,, X,,..., X, are independent random variables and X, ~
Poisson(A;), then X, +X,+---+ X, ~Poisson(A, +A,+ -

+A,.)

®
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p(x}
0.6

0.5
0.4
0.3+ |
0.24
0.1

0 I

p{x)
0.6

0.5 A=2
0.4
0.3
0.2—

0.1— I
0 i
0 1 2

3
FIGURE 6.16
Poisson( A) mass functions.
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px)
0.6

0.5
0.4
0.3

0.2
0.1

p(x)
0.6
0.5
0.4~

0.2

0.1+

Tomado de las pags.330-350 de “Simulation Modeling & Andlisis” (2° edicion)

Averill M. Law y W. David Kelton , McGraw-Hill, 1991



